anyone care to put a meaning for this into layman's terms?
To my mind the issue is color balance. No, really. Quarks have a property called "color" (not in any way related to visible colors), which needs to be balanced in order to get a stable particle. (It's a consequence of the non-abelian SU(3) gauge group of the strong nuclear force. Aren't you glad you asked?)
The upshot is that to get a stable particle, you need to have a set of blue+anti-blue, or red+anti-red, or green+anti-green, or blue+green+red or anti-blue+anti-green+anti-red quarks. This is the origin of the 2 quark (color+anti-color) or 3 quark (all colors) particle. (Of course, this is a simplification - because of gluons the colors of the particles are constantly swapping around, but in ways that maintain the color balance.)
Having four quarks upsets this notion. You need some way of balancing the color, and the "traditional" ways of doing it won't work. My guess is that this new particle is probably something like a blue+anti-blue+red+anti-red. As the news article mentions, it's apparently still up in the air whether this should really be considered a true four quark particle, or simply two particles (blue+anti-blue & red+anti-red) in very close association.
Source: http://rss.slashdot.org/~r/Slashdot/slashdotScience/~3/79F209gYBtg/story01.htm
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.